Объяснимые модели искусственного интеллекта на Python




В этой книге рассматриваются так называемые модели «черного ящика» для повышения адаптивности, интерпретируемости и объяснимости решений, принимаемых алгоритмами искусственного интеллекта (ИИ), с использованием таких фреймворков, как библиотеки Python XAI, TensorFlow 2.0+, Keras, а также пользовательских фреймворков, использующих оболочки Python. Излагаются основы объяснимости и интерпретируемости моделей, обсуждаются методы и системы для интерпретации линейных, нелинейных моделей и моделей временных рядов, используемых в ИИ. Вы узнаете, как алгоритм ИИ принимает решение и как сделать модель ИИ интерпретируемой и объяснимой, ознакомитесь с моделями глубокого обучения.
Перейти к описанию и характеристикамPublisher | ДМК Пресс |
Weight, g | 640 |
В этой книге рассматриваются так называемые модели «черного ящика» для повышения адаптивности, интерпретируемости и объяснимости решений, принимаемых алгоритмами искусственного интеллекта (ИИ), с использованием таких фреймворков, как библиотеки Python XAI, TensorFlow 2.0+, Keras, а также пользовательских фреймворков, использующих оболочки Python. Излагаются основы объяснимости и интерпретируемости моделей, обсуждаются методы и системы для интерпретации линейных, нелинейных моделей и моделей врем ...
Publisher | ДМК Пресс |
Weight, g | 640 |